Accident types
Loss of coolant accident
Main article: Loss of coolant
See also: Nuclear meltdown
Criticality accidents
A criticality accident (also sometimes referred to as an "excursion" or "power excursion") occurs when a nuclear chain reaction is accidentally allowed to occur in fissile material, such as enriched uranium or plutonium. The Chernobyl accident is an example of a criticality accident. In a smaller scale accident at Sarov a technician working with highly enriched uranium was irradiated while preparing an experiment involving a sphere of fissile material. The Sarov accident is interesting because the system remained critical for many days before it could be stopped, though safely located in a shielded experimental hall [2]. This is an example of a limited scope accident where only a few people can be harmed, while no release of radioactivity into the environment occurred. A criticality accident with limited off site release of both radiation (gamma and neutron) and a very small release of radioactivity occurred at Tokaimura in 1999 during the production of enriched uranium fuel [3].
Decay heat
Decay heat accidents are where the heat generated by the radioactive decay causes harm. In a large nuclear reactor, a loss of coolant accident can damage the core: for example, at Three Mile Island a recently shutdown (SCRAMed) PWR reactor was left for a length of time without cooling water. As a result the nuclear fuel was damaged, and the core partly melted. However, the main cause of release of radioactivity in the Three Mile Island accident was a Pilot-operated relief valve on the primary loop which stuck in the open position. This caused the overflow tank into which it drained to rupture and release large amounts of radioactive cooling water.
Transport
Transport accidents can cause a release of radioactivity resulting in contamination or shielding to be damaged resulting in direct irradiation. In Cochabamba a defective gamma radiography set was transported in a passenger bus as cargo. The gamma source was outside the shielding, and it irradiated some bus passengers.
In the United Kingdom, it was revealed in a recent court case that a radiotherapy source was transported from Leeds to Sellafield with defective shielding. The shielding had a gap on the underside. It is thought that no human has been seriously harmed by the escaping radiation.[1]
Equipment failure
Equipment failure is one possible type of accident, recently at Białystok in Poland the electronics associated with a particle accelerator used for the treatment of cancer suffered a malfunction [4]. This then led to the overexposure of at least one patient. While the initial failure was the simple failure of a semiconductor diode, it set in motion a series of events which led to a radiation injury.
A related cause of accidents is failure of control software, as in the cases involving the Therac-25 medical radiotherapy equipment: the elimination of a hardware safety interlock in a new design model exposed a previously undetected bug in the control software, which could lead to patients receiving massive overdoses under a specific set of conditions.
Human error
Human error has been responsible for some accidents, such as when a person miscalculated the activity of a teletherapy source. This then led to patients being given the wrong dose of gamma rays. In the case of radiotherapy accidents, an underexposure is as much an accident as an overexposure as the patients may not get the full benefit of the prescribed treatment. Also, humans have made errors while attempting to service plants and equipment which has resulted in overdoses of radiation, such as the Nevvizh and Soreq irradiator accidents. In Japan two minor millennium bugs came to light [5]
In 1946 Canadian Manhattan Project physicist Louis Slotin performed a risky experiment known as "tickling the dragon's tail" [2] which involved two hemispheres of neutron-reflective Beryllium being brought together around a plutonium core to bring it to criticality. Against operating procedures, the hemispheres were separated only by a screwdriver. The screwdriver slipped and set off a chain reaction criticality accident filling the room with harmful radiation and a flash of blue light (caused by excited, ionized air particles returning to their unexcited states). Slotin reflexively separated the hemispheres in reaction to the heat flash and blue light, preventing further radiation of several co-workers present in the room. However Slotin absorbed a lethal dose of the radiation and died during the following week.
Lost source
Lost source accidents[6][7] are ones in which a radioactive source is lost, stolen or abandoned. The source then might cause harm to humans or the environment. For example, see the event in Lilo where sources were left behind by the Soviet army. Another case occurred at Yanango where a radiography source was lost, also at Samut Prakarn a cobalt-60 teletherapy source was lost [8] and at Gilan in Iran a radiography source harmed a welder [9]. The best known example of this type of event is the Goiânia accident which occurred in Brazil.
The International Atomic Energy Agency have provided guides for scrap metal collectors on what a sealed source might look like.[10][11] The scrap metal industry is the one where lost sources are most likely to be found.[12]
Others
Some accidents defy classification. These accidents happen when the unexpected occurs with a radioactive source. For instance if a bird grabs a radioactive source containing radium from a window sill and then was to fly away with it, returning to its nest and then the bird dies shortly afterwards from direct irradiation then it is the case that a minor radiation accident has occurred. As the act of placing the source on a window sill by a human was the event which permitted the bird access to the source, it is unclear how such an event should be classified (if is a lost source event or a something else). Radium lost and found[13][14] describes a tale of a pig walking about with a radium source inside; this was a radium source lost from a hospital.
Also some accidents are "normal" industrial accidents which happen to involve radioactive material, for instance a runaway reaction at Tomsk (see red oil) caused radioactive material to be spread around the site.
For a list of many of the most important accidents see the International Atomic Energy Agency site [15] .
Analyses of nuclear power plant accidents
The Nuclear Regulatory Commission (NRC) now requires each nuclear power plant in the U.S. to have a probabilistic risk assessment (PRA) performed upon it. The two types of such plants in the US (as of 2007) are boiling water reactors and pressurized water reactors, and a study based on two early such PRAs was done (NUREG-1150) and released to the public. However, those early PRAs made unrealistically conservative assumptions, and the NRC is now generating a new study.
Source:
http://en.wikipedia.org/wiki/Nuclear_accident